首页> 外文OA文献 >Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures
【2h】

Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures

机译:集群数量少时估计多级Logistic回归模型:不同统计软件过程的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.
机译:在医学,公共卫生,流行病学和教育研究中,越来越多的Logistic回归模型被用于分析聚类数据。许多统计软件包都提供了估算此类模型参数的过程。当前几乎没有证据表明可靠地拟合多级回归模型所需的最小簇数。我们进行了蒙特卡洛研究,以比较当簇数较少时用于估计多级逻辑回归模型的不同统计软件过程的性能。我们检查了BUGS,HLM,R,SAS和Stata中可用的过程。我们发现,当集群数量较少时,用于估计多级逻辑模型的不同软件过程的性能存在质的差异。在基于似然的过程中,基于对可能性的自适应高斯-赫尔米特近似(R中的glmer和Stata中的xtlogit)或自适应高斯正交(SAS中的Proc NLMIXED)的估计方法在估计方差分量时倾向于具有更好的性能。与基于惩罚拟似然的软件过程相比,簇的数量很小。但是,只有少于10个聚类时,只有带有BUGS的贝叶斯估计才可以准确估计方差分量。对于所有统计软件程序,当每个聚类只有五个主题时,无论聚类数量如何,方差分量的估计都趋于较差。

著录项

  • 作者

    Austin, Peter C;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号